Quotient BCI-algebras induced by pseudo-valuations

Shokoofeh Ghorbani
Department of Mathematics of Bam, Shahid Bahonar University of Kerman, Kerman, Iran
E-mail: sh.ghorbani@mail.uk.ac.ir

Abstract

In this paper, we study pseudo-valuations on a BCI-algebra and obtain some related results. The relation between pseudo-valuations and ideals is investigated. We use a pseudo-metric induced by a pseudovaluation to introduce a congruence relation on a BCI-algebra. We define the quotient algebra induced by this relation and prove that it is also a BCI-algebra and study its properties.

Keywords: BCI-algebra, pseudo-valuation, ideal, pseudo-metric, quotient algebra.

2000 Mathematics subject classification: 06F35, 08A30, 03G25.

1. Introduction

The notions of BCK and BCI-algebras were introduced by Imai and Iseki in $[7,8]$. They are two important classes of logical algebras. BCI-algebras are generalization of BCK-algebras. Some properties of these structures were presented in $[1,4,6,10,11,12]$ and [13]. Recently, D. Busneag $[2,3]$ introduced the notion of a pseudo valuation and applied it to Hilbert-algebras and residuated lattices. Also, M. I. Doh and M. S. Kang [5] applied pseudo valuations
to BCK/BCI algebras and investigate some properties.
In the next section, some preliminary definitions and theorems are stated. In section 3, we study pseudo-valuation on BCI-algebras and investigate its properties which is not in [5]. We discuss the relation among pseudo-valuations and ideals of a BCI-algebra. We obtain some results of pseudo-metrics induced by pseudo-valuations on BCI-algebras and prove that a pseudo-metric induced by a pseudo-valuation v is a metric on a BCK-algebra if and only if v is a valuation but it may not be true in general for a BCI-algebra. In section 4 , we use pseudometric induced by a pseudo-valuation to define the quotient algebra. We prove that this quotient algebra is also a BCI-algebra and obtain some related results.

2. Preliminaries

Definition 2.1.[11] An algebra $(X, *, 0)$ of type $(2,0)$ is called a BCI-algebra, if it satisfies the following conditions: for any $x, y, z \in X$:
(BCI 1) $((x * y) *(x * z)) *(z * y)=0$,
(BCI 2) $x * 0=x$,
(BCI 3) $x * y=0$ and $y * x=0$ imply $x=y$.
We call the binary operation $*$ on X the multiplication on X and the constant of X the zero element of X. We often write X instead of $X=(X, *, 0)$ for a BCI-algebra in brevity.

Theorem 2.2.[11] Let X be a BCI-algebra. Define a binary relation \leq on X by which $x \leq y$ if and only if $x * y=0$ for any $x, y \in X$. Then (X, \leq) is a partially ordered set with 0 is a minimal element in the meaning that $x \leq 0$ implies $x=0$.

A BCI-algebra X satisfying $0 \leq x$ for all $x \in X$ is called a BCK-algebra.[10] The set of all positive elements of a BCI-algebra X is called the BCK-part of X and is denoted by $B(X)$.

Theorem 2.3. $[10,11]$ Let x, y, z be any elements in a BCI-algebra X. Then
(1) $x \leq y$ implies $z * y \leq z * x$,
(2) $x \leq y$ implies $x * z \leq y * z$,
(3) $x * y \leq z$ if and only if $x * z \leq y$,
(4) $x *(x * y) \leq y$,
(5) $(x * y) *(z * y) \leq(x * z)$,
(6) $(x * y) *(x * z) \leq(z * y)$,
(7) $(x * y) * z=(x * z) * y$,
(8) $x \leq x$,
(9) $0 *(x * y)=(0 * x) *(0 * y)$.

A subset Y of a BCI-algebra X is called a subalgebra of X if constant 0 of X is in Y, and $(Y, *, 0)$ itself forms a BCI-algebra. $B(X)$ is a subalgebra of a BCI-algebra X.

Definition 2.4.[11] A subset I of a BCI-algebra X is called an ideal of X if (1) $0 \in I$,
(2) $y \in I, x * y \in I$ imply $x \in I$ for any $x, y \in X$.

Any ideal I has the property: $y \in I$ and $x \leq y$ imply $x \in I$.

Definition 2.5.[11] An ideal I of a BCI-algebra X is called closed if I is closed under $*$ on X (i.e, I is a subalgebra of X).

Proposition 2.6.[11] An ideal I of a BCI-algebra X is closed if and only if $0 * x \in I$ for any $x \in I$.

Proposition 2.7.[11] Let X be a BCI-algebra. Then
(i) If an ideal of X is a finite order, then it is closed, especially, if X is a finite order, then any ideal of X is closed.
(ii) If X is a BCK-algebra, then any ideal of X is closed.

Definition 2.8.[11] Let X and Y be BCI-algebras. A map $f: X \rightarrow Y$ is called homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$.
f is called epimorphism, if it is a surjective homomorphism. f is called monomorphism, if it is a injective homomorphism. An isomorphism means that f is both of epimorphic and monomorphic. Moreover, we say X is isomorphic to Y, symbolically, $X \cong Y$, if there is an isomorphism from X to Y. For a homomorphism $f: X \rightarrow Y$, we have $f(0)=0$ where 0 and 0 are zero elements of X and Y, respectively.

Definition 2.9.[11] An equivalence relation θ on a BCI-algebra X is called a congruence relation on X, if $(x, y) \in \theta$ implies $(x * z, y * z) \in \theta$ and $(z * x, z * y) \in \theta$ for all $x, y, z \in X$.

Theorem 2.10.[11] Let I be an ideal of a BCI-algebra X. Define a binary relation θ_{I} on X as follows: $(x, y) \in \theta_{I}$ if and only if $x * y, y * x \in I$, for all $x, y \in X$. Then θ_{I} is a congruence relation on X which is called the ideal congruence on X induced by the ideal I.

Theorem 2.11.[11] Let I be an ideal of a BCI-algebra X and θ_{I} be the ideal congruence relation. The set of all equivalence classes $[x]_{I}=\{y \in X:(x, y) \in$ $\left.\theta_{I}\right\}$ is denoted by X / I. On this set, we define $[x]_{I} *[y]_{I}=[x * y]_{I}$. Then
$\left(X / I, *,[0]_{I}\right)$ is a BCI-algebra.

3. Pseudo-valuations on BCI-AlGEbras

Definition 3.1.[4] A real function $v: X \rightarrow \Re$ is called a pseudo-valuation on a BCI-algebra X if it satisfies the following conditions:
$(\mathrm{V} 1) v(0)=0$,
(V2) $v(x) \leq v(x * y)+v(y)$; for all $x, y \in X$.
The pseudo-valuation v is said to be a valuation if (V3) $v(x)=0$ implies $x=0$.

Example 3.2.(i) Let X be an arbitrary BCI-algebra and $c \in \Re$ such that $c \geq 0$. Define $v: X \rightarrow \Re$ by $v(x)=c$ for all $x \in X-\{0\}$ and $v(0)=0$. Then v is a pseudo-valuation on X. If $c=0$, then v is called zero pseudo-valuation. (ii) The set Z of integer, together with the binary operation $*$ defined by $x * y=x-y$ forms a BCI-algebra, where the operation - is the subtraction as usual. Let $a \neq 0$ be an arbitrary element of Z. Then $v(x)=a x$ is a valuation on Z.

Theorem 3.3. Let v be a pseudo-valuation on a BCI-algebra X. Then
(1) $x \leq y$ implies $v(x) \leq v(y)$,
(2) $v(x * y) \leq v(x * z)+v(z * y)$,
(3) $0 \leq v(x * y)+v(y * x)$,
for all $x, y, z \in X$.

Proof. See Proposition 3.11 in [4].

Corollary 3.4. Let v be a pseudo-valuation on a BCI-algebra X. If $x \in B(X)$, then $v(x) \geq 0$.

Proof. Since $x \in B(X)$, then $0 \leq x$. By Theorem 3.3 part (1), we get that $0=v(0) \leq v(x)$.

In the following example, we will show that if v is a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ where $x \in X$, then it may not be true $x \in B(X)$ in general.

Example 3.5. Let X be a BCI-algebra with the universe $\{0,1, a\}$ such that the operation $*$ is defined by the table below:

$*$	0	1	a
0	0	0	a
1	1	0	a
a	a	a	0

Define $v(0)=0, v(1)=3$ and $v(a)=6$. Then v is a pseudo-valuation on X and $v(a) \geq 0$. But we have $a \notin B(X)$.

Theorem 3.6. Let I be an ideal of a BCI-algebra X and t be a positive element of \Re. Define $v_{I}: X \rightarrow \Re$,

$$
v_{I}(x)= \begin{cases}0 & x \in I \\ t & x \notin I\end{cases}
$$

Then v_{I} is a pseudo-valuation on X which is called the pseudo-valuation induced by ideal I. Moreover v_{I} is a valuation if and only if $I=\{0\}$.

Proof. The proof is straightforward.
Theorem 3.7. Let v be a pseudo-valuation on a BCI- algebra X. Then $I_{v}=\{x \in X: v(x) \leq 0\}$ is an ideal of X which is called the ideal induced by pseudo-valuation v.

Proof. Since $v(0)=0$, we have $0 \in I_{v}$. Suppose that $y, x * y \in I_{v}$. Then $v(y), v(x * y) \leq 0$. We get that

$$
v(x) \leq v(x * y)+v(y) \leq 0
$$

Therefore $x \in I_{v}$ and I_{v} is an ideal of X.
Corollary 3.8. Let v be a pseudo-valuation on a BCI-algebra X. If X is finite order or $X=B(X)$, then I_{v} is a closed ideal of X.

Proof. It follows from Theorem 3.7 and Proposition 2.7.
Remark 3.9. The ideal induced by a pseudo-valuation v on a BCI-algebra X may not be closed. Consider Example 3.2 part (ii). If $v(x)=x$, for all $x \in Z$, then I_{v} is the set of negative integer which is not a closed ideal of Z.

Theorem 3.10. Let I be an ideal of a BCI-algebra X. Then $I_{v_{I}}=I$.

Proof. We have $I_{v_{I}}=\left\{x \in X: v_{I}(x) \leq 0\right\}=\{x \in X: x \in I\}=I$.

Remark 3.11. The above Theorems do not furnish a one to one correspondence between ideals and pseudo-valuations, because two distinct pseudovaluations of a given BCI-algebra may induce the same ideal. Consider the following example:

Example 3.12. Let X be a BCI-algebra with the universe $\{0,1,2, a, b\}$ such that the operation $*$ is defined by the table below:

$*$	0	1	2	a	b
0	0	0	0	a	a
1	1	0	0	a	a
2	2	2	0	b	a
a	a	a	a	0	0
b	b	b	a	2	0

Define $v_{1}(0)=v_{1}(1)=0, v_{1}(2)=4, v_{1}(a)=3, v_{1}(b)=5$ and $v_{2}(0)=v_{2}(1)=$ $0, v_{2}(2)=4, v_{2}(a)=2, v_{2}(b)=3$. Then v_{1} and v_{2} are two pseudo-valuations on X such that $I_{v_{1}}=\{0,1\}=I_{v_{2}}$.

Theorem 3.13. Let v be a pseudo-valuation on a BCI-algebra X. Define $d_{v}: X \times X \rightarrow \Re$ by

$$
d_{v}(x, y)=v(x * y)+v(y * x),
$$

for $(x, y) \in X \times X$. Then d_{v} is a pseudo-metric on X which is called the pseudo-metric induced by pseudo-valuation v.

Proof. See Theorem 3.6 in [4].
Theorem 3.14. Let v be a pseudo-valuation on a BCI-algebra X such that I_{v} is a closed ideal of X. If d_{v} is a metric on X, then v is a valuation.

Proof. Suppose that v is not a valuation on X. Then there exists $x \in X$ such that $x \neq 0$ and $v(x)=0$. Hence $0, x \in I_{v}$. Since I_{v} is a closed ideal of X, then $0 * x \in I_{v}$, that is $v(0 * x) \leq 0$. We have

$$
0=v(0) \leq v(0 * x)+v(x)=v(0 * x) \leq 0
$$

Hence $v(0 * x)=0$. We get that $d_{v}(x, 0)=v(x * 0)+v(0 * x)=0$. Since d_{v} is a metric on X, then $x=0$ which is a contradiction.

If I_{v} is not a closed ideal of X, then the above theorem may not be true. See the following example:

Example 3.15. Consider the set Z of integer, together with the binary operation $*$ defined by $x * y=x-y$. Let $a>o$ be an arbitrary element of Z. Define $v_{a}(x)=a-x$, where $x \in Z-\{0\}$ and $v_{a}(0)=0$. Then v_{a} is a pseudo-valuation
on a BCI-algebra Z, d_{v} is a metric space and $I_{v}=\{x \in X: a \leq x\} \cup\{0\}$ is not a closed ideal of Z. Since $v_{a}(a)=0$, then v_{a} is not a valuation.

Theorem 3.16. Let v be a valuation on a BCI-algebra X such that $I_{v}=\{0\}$. Then d_{v} is a metric on X.

Proof. Since $I_{v}=\{0\}$, then $v(x) \geq 0$ for all $x \in X$. Hence d_{v} is a metric on X by Theorem 3.20 in [4].

If $I_{v} \neq\{0\}$, then the above theorem may not be true. Consider v in Remark 3.9. Then $I_{v} \neq\{0\}$ and $d_{v}(0,1)=0$. Hence d_{v} is not a metric on X.

Corollary 3.17. Let v be a pseudo-valuation on a BCK-algebra X. Then v is a valuation if and only if d_{v} is a metric on X.

Proof. Since v is a valuation and X is a BCK-algebra, then $I_{v}=\{0\}$. By Theorem 3.16, d_{v} is a metric on X. Converse follows from Theorem 3.14 and Proposition 2.7.

Lemma 3.18. Let v be pseudo-valuation on a BCI-algebra X. Then
(1) $d_{v}(x * z, y * z) \leq d_{v}(x, y)$,
(2) $d_{v}(z * x, z * y) \leq d_{v}(x, y)$,
(3) $d_{v}(x * y, z * w) \leq d_{v}(x * y, z * y)+d_{v}(z * y, z * w)$, for all $x, y, z, w \in X$.

Proof. See Proposition 3.17 in [4].

4. Quotient BCI-Algebras induced By pseudo valuations

Definition 4.1. Let v be a pseudo-valuation on a BCI-algebra X. Define the relation θ_{v} by:

$$
(x, y) \in \theta_{v} \quad \text { if and only if } \quad d_{v}(x, y)=0
$$

for all $x, y \in X$.

Proposition 4.2. Let v be a pseudo-valuation on a BCI-algebra X. Then θ_{v} is a congruence relation on X which is called the congruence relation induced by v.

Proof. Since θ_{v} induced by a pseudo-metric, it is an equivalence relation on X. Suppose that $(x, y),(z, w) \in \theta_{v}$. Then we have $d_{v}(x, y)=d_{v}(z, w)=0$. By

Lemma 3.18 part (1), we have $d_{v}(x * z, y * z) \leq d_{v}(x, y)=0$. By Theorem 3.3 part (3), we obtain that $0 \leq v((x * z) *(y * z))+v((y * z) *(x * z))=d_{v}(x * z, y * z)$. Hence $d_{v}(x * z, y * z)=0$ and then $(x * z, y * z) \in \theta_{v}$. Similar proof gives $(y * z, y * w) \in \theta_{v}$. Since θ_{v} is transitive, then $(x * z, y * w) \in \theta_{v}$. Hence θ_{v} is a congruence relation on X.

Definition 4.3. Let v be a pseudo-valuation on a BCI-algebra X and θ_{v} be the congruence relation induced by v. The set of all equivalence classes $[x]_{v}=\left\{y \in A:(x, y) \in \theta_{v}\right\}$ is denoted by X / v. On this set, we define $[x]_{v} *[y]_{v}=[x * y]_{v}$. The resulting algebra is denoted by X / v and is called the quotient algebra of X induced by pseudo-valuation v.

Theorem 4.4. Let v be a pseudo-valuation on a BCI-algebra X. Then $\left(X / v, *,[0]_{v}\right)$ is a BCI-algebra and $d^{*}\left([x]_{v},[y]_{v}\right)=d(x, y)$ is a metric on X / v. Moreover, the quotient topology on X / v coincide with the metric topology induced by d^{*}.

Proof. Since θ_{v} is a congruence relation, the operation $*$ is well defined. The proof of (BCI 1) and (BCI 2) is obvious. We only prove (BCI 3). Suppose that $[x]_{v} *[y]_{v}=[0]_{v}$ and $[y]_{v} *[x]_{v}=[0]_{v}$ for some $x, y \in X$. Then $[x * y]_{v}=[0]_{v}$ and $[y * x]_{v}=[0]_{v}$ by Definition 4.3. So $(x * y, 0),(y * x, 0) \in \theta_{v}$. By definition of θ_{v}, the following hold

$$
v(x * y)+v(0 *(x * y))=0 \quad \text { and } \quad v(y * x)+v(0 *(y * x))=0
$$

By Theorem 2.3 part (9), we have $(0 * x) *(0 * y)=0 *(x * y)$ and $(0 * y) *(0 * x)=$ $0 *(y * x)$. Since v is a pseudo-valuation and order preserving, we obtain that

$$
\begin{aligned}
& v(0 * x)-v(0 * y) \leq v((0 * x) *(0 * y))=v(0 *(x * y)), \\
& v(0 * y)-v(0 * x) \leq v((0 * y) *(0 * x))=v(0 *(y * x)) .
\end{aligned}
$$

We get that

$$
\begin{aligned}
& v(0 * x)-v(0 * y)+v(x * y) \leq v(0 *(x * y))+v(x * y)=0 \\
& v(0 * y)-v(0 * x)+v(y * x) \leq v(0 *(y * x))+v(y * x)=0
\end{aligned}
$$

Therefore $v(x * y)+v(y * x) \leq 0$. By Theorem 3.3 part (3), $v(x * y)+v(y * x)=0$. It follows that $(x, y) \in \theta_{v}$, that is $[x]_{v}=[y]_{v}$. Hence $\left(X / v, *,[0]_{v}\right)$ is a BCIalgebra.

Proposition 4.5. Let v be a pseudo-valuation on a BCI-algebra X such that I_{v} is a closed ideal of X. Then $I_{v} \subseteq[0]_{v}$.

Proof. Let $x \in I_{v}$. Then $v(x) \leq 0$. Since I_{v} is a closed ideal of X, then $0 * x \in I_{v}$. By definition $I_{v}, v(0 * x) \leq 0$. We get that $v(0 * x)+v(x) \leq 0$. By Theorem 3.3 part (3), $v(0 * x)+v(x)=0$. Hence $x \in[0]_{v}$.

If I_{v} is a not a closed ideal of X, then the above theorem may not be true in general. For example, we have $I_{v} \nsubseteq[0]_{v}$ in Remark 3.9.

Proposition 4.6. Let v be a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ for all $x \in X$. Then $[0]_{v} \subseteq I_{v}$.

Proof. Let $x \in[0]_{v}$. Then $(0, x) \in \theta_{v}$. By definition θ_{v}, we have $v(0 * x)+v(x)=$ 0 . Since $v(x) \geq 0$ for all $x \in X$, we obtain $v(0 * x)=v(x)=0$. Hence $x \in I_{v}$ by definition I_{v}.

If we do not have $v(x) \geq 0$ for all $x \in X$, then the above theorem may not be true. Consider Example 3.15, we have $I_{v} \nsubseteq[0]_{v}$.

Corollary 4.7. Let v be a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ for all $x \in X$ and I_{v} is a closed ideal of X. Then $I_{v}=[0]_{v}$.

Proof. It follows from Proposition 4.5 and Proposition 4.6.
Proposition 4.8. Let v be a pseudo-valuation on a BCI-algebra X and I_{v} be the ideal induced by v. Then $\theta_{I_{v}} \subseteq \theta_{v}$.

Proof. Let $(x, y) \in \theta_{I_{v}}$. Then $x * y, y * x \in I_{v}$. We have $v(x * y) \leq 0$ and $v(y * x) \leq 0$, by definition I_{v}. Thus $v(x * y)+v(y * x) \leq 0$. By Theorem 3.3 part (3), $v(x * y)+v(y * x)=0$. It follows that $(x, y) \in \theta_{v}$. Hence $\theta_{I_{v}} \subseteq \theta_{v}$.

In the above theorem, the opposite inclusion may not hold. See Example 3.2 part (2).

Proposition 4.9. Let v be a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ for all $x \in X$ and I_{v} be the ideal induced by v. Then $\theta_{v} \subseteq \theta_{I_{v}}$.

Proof. Let $(x, y) \in \theta_{v}$. Then $v(x * y)+v(y * x)=0$. Since $v(x) \geq 0$ for all $x \in X$, we obtain that $v(x * y)=0$ and $v(y * x)=0$. By definition I_{v}, we get that $x * y, y * x \in I_{v}$. It follows that $(x, y) \in \theta_{v}$. Hence $\theta_{v} \subseteq \theta_{I_{v}}$.

Proposition 4.10. Let I be an ideal of a BCI-algebra X. Then $\theta_{I}=\theta_{v_{I}}$.

Proof. Let $(x, y) \in \theta_{I}$. Then $x * y, y * x \in I$ by Theorem 2.10. We have $v_{I}(x * y)=v_{I}(y * x)=0$, by Theorem 3.6. Hence $d_{v}(x, y)=0$ and then $(x, y) \in \theta_{v_{I}}$.
Conversely, let $(x, y) \in \theta_{v_{I}}$. Then $v_{I}(x * y)+v_{I}(y * x)=0$. Since $v_{I}(x) \geq 0$ for all $x \in X$, we obtain that $v_{I}(x * y)=v_{I}(y * x)=0$, that is $x * y, y * x \in I$. Hence $(x, y) \in \theta_{I}$.
Theorem 4.11. Let v_{1} and v_{2} be two different pseudo-valuations on a BCIalgebra X such that $[0]_{v_{1}}=[0]_{v_{2}}$. Then $\theta_{v_{1}}$ and $\theta_{v_{2}}$ coincide, thus $X / v_{1}=$ X / v_{2}.

Proof. Let $(x, y) \in \theta_{v_{1}}$. Then $(x * y, 0)=(x * y, y * y) \in \theta_{v_{1}}$. It follows that $x * y \in[0]_{v_{1}}$. Similarly, we can show that $y * x \in[0]_{v_{1}}$. By assumption $[0]_{v_{1}}=[0]_{v_{2}}$, so we get that

$$
[x]_{v_{2}} *[y]_{v_{2}}=[x * y]_{v_{2}}=[0]_{v_{2}} \quad \text { and } \quad[y]_{v_{2}} *[x]_{v_{2}}=[y * x]_{v_{2}}=[0]_{v_{2}}
$$

Since X / v_{2} is a BCI-algebra, then $[x]_{v_{2}}=[y]_{v_{2}}$. Hence $(x, y) \in \theta_{v_{2}}$ and then $X / v_{1}=X / v_{2}$. It follows that $X / v_{2}=X / v_{1}$.

Lemma 4.12. Let v be a pseud-valuation on a BCI-algebra X and I be an ideal of X such that $[0]_{v} \subseteq I$. Denote $I / v=\left\{[x]_{v}: x \in I\right\}$. Then
(1) $x \in I$ if and only if $[x]_{v} \in I / v$ for any $x \in X$,
(2) I / v is an ideal of X / v.

Proof. (1) Suppose that $[x]_{v} \in I / v$. Then there exists $y \in I$ such that $[x]_{v}=$ $[y]_{v}$. Hence $(x, y) \in \theta_{v}$. It follows that $(x * y, 0) \in \theta_{v}$. We get that $x * y \in[0]_{v}$. Since $[0]_{v} \subseteq I$, we have $x * y, y \in I$. Hence $x \in I$. The converse is trivial.
(2) Since $0 \in I$, then $[0]_{v} \in I / v$ by part (1). Let $[x]_{v} *[y]_{v},[y]_{v} \in I / v$. By Definition 4.3, $[x]_{v} *[y]_{v}=[x * y]_{v}$. We have $x * y, y \in I$ by part (1). Since I is an ideal, $x \in I$. We get that $[x]_{v} \in I / v$. Therefore I / v is an ideal of X / v.

Lemma 4.13. Let v be a pseudo-valuation on a BCI-algebra X and J be an ideal of X / v. Then $I=\left\{x \in X:[x]_{v} \in J\right\}$ is an ideal of X such that $[0]_{v} \subseteq I$.

Proof. It is clear that $0 \in[0]_{v} \subseteq I$. Suppose that $x * y, y \in I$. Then $[y]_{v},[x *$ $y]_{v}=[x]_{v} *[y]_{v} \in J$. Since J is an ideal of X / v, then $[x]_{v} \in J$. By definition I, we obtain $x \in I$. Hence I is an ideal of X.

Theorem 4.14. Let v be a pseudo-valuation on a BCI-algebra $X, I(X, v)$ the collection of all ideals of X containing $[0]_{v}$, and $I(X / v)$ the collection of all ideals of X / v. Then $\varphi: I(X, v) \rightarrow I(X / v), I \rightarrow I / v$, is a bijection.

Proof. It follows from Lemma 4.12 and Lemma 4.13.
Lemma 4.15. Let X and Y be BCI-algebras, $f: X \rightarrow Y$ a homomorphism and v a pseudo-valuation on Y. Then $v \circ f: X \rightarrow \Re$ defined by $v \circ f(x)=v(f(x))$ for all $x \in X$ is a pseudo-valuation on X.

Proof. The proof is straightforward.
Theorem 4.16. Let X and Y be BCI-algebras, $f: X \rightarrow Y$ an epimorphism and v a pseudo-valuation on Y. Then $X / v \circ f \cong Y / v$.

Proof. By Lemma 4.15 and Theorem 4.4, we have $X / v \circ f$ and Y / v are BCIalgebras. Define $\psi: X / v \circ f \rightarrow Y / v$ by $\psi\left([x]_{v \circ f}\right)=[f(x)]_{v}$ for all $x \in X$.
(1) Suppose that $[x]_{v \circ f}=[y]_{v \circ f}$. Then $(v \circ f)(x * y)+(v \circ f)(y * x)=0$. Since f is a homomorphism, then $v(f(x) * f(y))+v(f(y) * f(x))=0$. We obtain that $[f(x)]_{v}=[f(y)]_{v}$. We get that $\psi\left([x]_{v \circ f}\right)=\psi\left([y]_{v \circ f}\right)$, that is ψ is well define.
(2) We show that ψ is a homomorphism. Since f is a homomorphism,
(i) $\psi\left([0]_{v \circ f}\right)=[f(0)]_{v}=[0]_{v}$,
(ii) $\psi\left([x]_{v \circ f} *[y]_{v \circ f}\right)=\psi\left([x * y]_{v \circ f}\right)=[f(x * y)]_{v}=[f(x) * f(y)]_{v}=$ $[f(x)]_{v} *[f(y)]_{v}=\psi\left([x]_{v \circ f}\right) * \psi\left([y]_{v \circ f}\right)$.
(3) Let $[y]_{v} \in Y / v$ be arbitrary. Since f is surjective, there exists $x \in X$ such that $f(x)=y$. Hence $\psi\left([x]_{v \circ f}\right)=[f(x)]_{v}=[y]_{v}$ and ψ is surjective.
(4) We prove that ψ is one to one. Suppose that $\psi\left([x]_{v \circ f}\right)=\psi\left([y]_{v \circ f}\right)$. Then $[f(x)]_{v}=[f(y)]_{v}$. We get that $v(f(x) * f(y))+v(f(y) * f(x))=0$. Since f is a homomorphism, then $(v \circ f)(x * y)+(v \circ f)(y * x)=0$. We obtain $[x]_{v \circ f}=[y]_{v \circ f}$. Hence $X / v \circ f \cong Y / v$.

Lemma 4.17. Let v be a pseudo-valuation on a BCI-algebra X and X / v be the corresponding quotient algebra. Then the map $\pi: X \rightarrow X / v$ defined by $\pi(x)=[x]_{v}$ for all $x \in X$ is an epimorphism.

Corollary 4.18. Let v be a pseudo-valuation on a BCI-algebra X and X / v the corresponding quotient algebra. For each pseudo-valuation $\overline{v_{1}}$ on a BCIalgebra X / v, there exists a pseudo-valuation v_{1} on a BCI-algebra X, such that $v_{1}=\overline{v_{1}} \circ \pi$.

Proof. It follows from Lemma 4.15 and Lemma 4.17.
Theorem 4.19. Let v be a pseudo-valuation on a BCI-algebra X such that $v(x) \geq 0$ for all $x \in X$. Then $\bar{v}: X / v \rightarrow \Re$ define by $\bar{v}\left([x]_{v}\right)=v(x)$ is a pseudo-valuation on X / v.

Proof. It is enough to show that \bar{v} is well defined. Let $[x]_{v}=[y]_{v}$. Since $v(x) \geq$ 0 , then $v(x * y)=v(y * x)=0$. We have $x *(x * y) \leq y$. By Theorem 3.3 part (1), $v(x *(x * y)) \leq v(y)$. It follows that $v(x *(x * y))+v(x * y) \leq v(y)+v(x * y)$. Therefore $v(x) \leq v(x *(x * y))+v(x * y) \leq v(y)$. Similarly, we can show that $v(y) \leq v(x)$. Therefore $v(y)=v(x)$ and then \bar{v} is well defined.

Acknowledgement. I am grateful to the referees for their valuable suggestions, which have improved this paper.

References

[1] A. Borumand Saeid, Redefined fuzzy subalgebra (with thresholds) of BCK/BCIalgebras, Iranian Journal of Mathematical Sciences and Informatics, 4 (2) (2009), 9-24.
[2] C. Busneag, On extensions of pseudo-valuations on Hilbert algebras, Discrete Mathematics, 263 (2003), 11-24.
[3] C. Busneag, Valuations on residuated lattices, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 21-28.
[4] M. Daoji, BCI-algebras and Abelian groups, Math. Japon., 32 (5)(1987), 693-696.
[5] M. I. Doh and M. S. Kang, BCK/BCI-algebras with pseudo valations, Honam Math. J., 32 (2) (2010), 217-226.
[6] M. Golmohammadian and M. M. Zahedi, BCK-Algebras and Hyper BCK-Algebras Induced by a Deterministic Finite Automaton, Iranian Journal of Mathematical Sciences and Informatics, 4 (1) (2009), 79-98.
[7] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Acad., 42(1966), 19-22.
[8] K. Iseki, An algebra related with a propositional calcules, Proc. Japan Acad., 42 (1966), 26-29.
[9] Y. B. Jun, S. Z. Song and C. Lele, Foldness of Quasi-associative Ideals in BCIalgebras, Scientiae Mathematicae, 6 (2002), 227-231.
[10] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, Korea, 1994.
[11] Y.S. Huang, BCI-algebra, Science Press, China, 2006.
[12] T. Roudabri and L. Torkzadeh, A topology on BCK-algebras via left and right stabilizers, Iranian Journal of Mathematical Sciences and Informatics, 4 (2) (2009), 1-8.
[13] C. Xi, on a class of BCI-algebras, Math Japonica 35, 1(1990), 13-17.

